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     This paper provides a short introduction to brain-computer interfaces for use by individuals lacking 
normal muscle control. The emphasis is on EEG-based methods that use electrical signals recorded non-
invasively from the brain for communication and environmental control.  Following a general overview, 
three influential methods are presented along with further resources for designing brain-computer 
interfaces.  Most of the material here was adopted with only minor changes from two excellent 
comprehensive reviews [2, 54], which the interested reader is encouraged strongly to read. 

BCIs in a neuropsychological context 
Target populations. Many disorders can disrupt the neuromuscular channels through which an 

individual communicates or controls his or her external environment. Amyotrophic lateral sclerosis 
(ALS), brainstem stroke, brain or spinal cord injury, cerebral palsy, muscular dystrophies, multiple 
sclerosis, and numerous other diseases impair either the neural pathways that control muscles or the 
muscles themselves. Those most severely affected may lose all voluntary muscle control, including eye 
movements and respiration, and may be completely locked into their bodies, unable to communicate in 
any way. 

 Alternatives for restoring function.  Other than repairing the physical damage caused by these 
disorders, there are three options for restoring communication and control. One is to expand the 
repertoire of remaining neuromuscular pathways. Muscles that remain under voluntary control can 
substitute for paralyzed ones. For example, people largely paralyzed by brainstem lesions can often use 
eye movements to answer questions, give simple commands, or even operate word processing programs 
[24, 25].  Another option is to restore function by detouring around breaks in the neural pathways.  For 
example, muscles above the level of a spinal cord lesion can control electrical stimulation of paralyzed 
muscles below [11, 15, 19]. The final option is to provide the brain with a new output channel that does 
not rely on peripheral nerves and muscles, in other words a direct brain–computer interface (BCI). 

     Brain measures for BCI. A variety of methods for monitoring brain activity might in principle 
provide the basis for a BCI. These include electrophysiological methods (both scalp recordings and 
more invasive methods), magnetoencephalography (MEG), functional magnetic resonance imaging 
(fMRI), and functional near-infrared imaging (fNIR). Many of these methods are technically demanding 
and expensive (fMRI and MEG), and those that depend on blood flow (fMRI and fNIR) are less 
amenable to rapid communication than those employing electrical or magnetic signals.  So far, only 
electrophysiological methods ─ which are sensitive to brief mental events, can function in most environ-
ments, and require relatively simple and inexpensive equipment ─ have been able to provide the basis 
for a practical BCI. 

  Suitable applications and users.  Current BCIs are suitable for basic environmental control (e.g. 
temperature, lights, television), answering yes/no questions, internet browsing, and word processing at 
slow rates.  They might also operate devices like a wheelchair and simple neuroprostheses or orthoses, 
like those providing hand grasp to people with cervical spinal cord injuries [28, 43].  Nevertheless, while 
current BCIs might provide such functions, most potential users have better conventional options. Those 
who retain control of only a single muscle (e.g. eyebrow, finger flexor, diaphragm) can often use it for 
communication and control that is faster and more accurate than that provided by current BCIs.  Thus, 
immediate users will be mainly those who lack all muscle control or whose remaining control is easily 
fatigued or otherwise unreliable. They include those who are totally paralyzed (e.g. by ALS or brainstem 
stroke) or have movement disorders (e.g. severe cerebral palsy) that abolish muscle control. Other 
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options for communication or environmental control may have little to offer them, so that even the 
simplest BCI-based abilities (e.g. to say ‘yes’ or ‘no’) could be valuable.  

     Invasive vs. noninvasive BCIs.  As mentioned, electrophysiological methods can be invasive or 
noninvasive.  BCIs based on the noninvasive methods employ electroencephalographic signals recorded 
from the scalp surface (EEG).  The electrophysiological signals employed to date for invasive BCIs 
include (1) action potentials from nerve cells or nerve fibers [17, 18], (2) synaptic and extracellular field 
potentials [38, 50], and (3) electrocorticograms [26, 29].  While the signal-to-noise ratios for these 
invasive measures is better than that for scalp-recorded EEG, they are still associated with medical risks 
and have yet to show clear advantages for patients.  Thus, EEG-based BCIs are likely to be preferred by 
many patients and researchers for some time to come [2].  Moreover, advances in EEG-based BCIs 
continue to be made, some of which are described below.  

Three examples of EEG-based BCI 
     Slow cortical potentials.  Scalp-recorded EEG is in part composed of slow changes in voltage, 
which are thought to originate from dendrites of pyramidal neurons in superficial layers of the cerebral 
cortex [3].  These voltage changes occur over a timescale of 0.5–10.0 sec and are called “slow cortical 
potentials” (SCPs). Negative SCPs are typically associated with movement and other functions 
involving cortical activation, while positive SCPs are usually associated with reduced cortical activation 
[1, 47].  Birbaumer and his colleagues have shown in numerous studies that people can learn to 
modulate their SCPs in order to control movement of an object on a computer screen [4, 5, 9]. This 
acquired ability provides the basis for a BCI tested extensively as a means of communication in people 
with late-stage ALS [21].  

     Typically, SCPs recorded from electrodes on the scalp surface are used to control the vertical 
position of a cursor on a computer screen displaying two alternative choices, one at the top of the screen 
and the other at the bottom.  Selection of an alternative takes 4 sec.  During an initial 2 sec period, the 
system measures a baseline voltage level for the user.  During the next 2 sec (Figure 1), the user selects 
the top or bottom alternative by decreasing or increasing voltage from the baseline level by a criterion 
amount. A similar SCP-based BCI can be employed as well in the auditory or tactile modality [5].  Users 
train in several 1–2 hour sessions per week over weeks or months.  When they consistently achieve 
accuracies 75%, they are switched to a language support program. 

 
Figure 1. Slow Cortical Potential (SCP) BCI (modified from [23]). Scalp EEG is recorded from the vertex.  Users learn to control SCPs to 
move a cursor towards a target at the bottom (more positive SCP) or top (more negative SCP) of a computer screen [4, 5, 23].   
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   The language support program [39, 40] enables the user to choose a letter or letter combination by a 
series of two-choice selections. In each selection, the choice is whether or not to accept a set of one or 
more letters.  The first two selections choose between the two halves of the alphabet, the next two 
choose between two halves of the selected half, and so on until a single letter is chosen. A backup or 
erase option is provided.  With this basic system, users who have two-choice accuracies of 65–90% can 
write 0.15–3.0 letters/min, or 2–36 words/hour. This rate can be markedly increased by a predictive 
algorithm that uses initial letters of a word to select words from the user’s vocabulary. A stand-by mode 
allows users with electrodes securely glued to their scalp to access the system 24 h/day by producing a 
specific sequence of positive and negative SCPs [16], which is essentially a key for turning the BCI on 
and off. 

     P300 event-related potential. Infrequent or particularly significant stimuli, when interspersed with 
frequent or routine stimuli, typically evoke a characteristic response in peoples’ EEG.  This response 
occurs regardless of stimulus modality (e.g. visual or auditory) or level of abstraction (e.g. sensory or 
semantic), has a characteristic distribution of voltage across the scalp (usually largest over parietal 
cortex), and requires that the eliciting stimulus be attended [7, 52, 53].  Because it is positive and often 
occurs with a latency of around 300 ms, this event-related EEG component is known as the “P300.” 

     Donchin, Farwell, and their colleagues have employed the P300 in a BCI where users view a 6 x 6 
matrix of letters, numbers, and/or other symbols or commands [8, 10].  Every 125 ms, a single row or 
column flashes, with each row and column flashed once in a complete trial of 12 flashes. The user 
chooses the contents of a cell in the matrix by counting how many times the row or column containing 
that cell flashes.  The average EEG response to the flash of each row and column is computed, and P300 
amplitude for each possible cell (row-column combination) is computed. As Figure 2 shows, P300 is 
prominent only in the EEG responses to flashed rows or columns containing the cell with the choice.  
This effect enables the BCI to identify a series of choices (e.g. letters) selected by the user. 
 

 
Figure 2. P300 BCI (modified from [23]).  A matrix of possible choices is presented on a screen, and EEG is recorded from centro-parietal 
scalp while these choices flash in succession.   Only the choice desired by the user evokes a large P300 [8, 10]. 

     In both experiments and simulations, different algorithms for identifying users’ choices have been 
evaluated and the relationship between various parameters (e.g. number of trials per choice) and BCI 



 4
accuracy described. These analyses suggest that the current P300-based BCI could yield a 
communication rate of one word (i.e. 5 letters) per minute and that further improvement in speed should 
be possible.  In people with visual impairments, auditory or tactile stimuli might be used [14, 48]. One 
advantage of a P300-based BCI is that, because the P300 depends on an unlearned reaction to 
improbable or pertinent stimuli, it may require minimal user training. A possible disadvantage is that 
P300 responses in a BCI are likely to change over time, as they have been found to do in conditioning 
protocols [14, 34, 48, 51].  Studies up to now have been short-term. With longer term use, the P300 
could conceivably diminish [46] or become enhanced.  Thus, adaptive algorithms for identifying users’ 
choices that recalibrate over time are likely to be especially important for this type of BCI.    

     Sensorimotor rhythms.  When not engaged in processing sensory input or motor output, the sensory 
or motor cortices of awake people often produce 8–12 Hz EEG activity [12, 13, 20, 37].  This idling 
activity, called mu rhythm when focused over sensorimotor cortex or visual alpha rhythm when focused 
over visual cortex, is thought to be produced by thalamocortical circuits [30, 37].  Mu rhythms are 
usually accompanied by 18–26 Hz beta rhythms, some of which have a different topography and/or 
timing than mu, and thus constitute an independent feature of EEG [32, 41, 42].   One reason these 
rhythms provide good signals for EEG-based BCIs is their association the brain’s normal motor output 
channels. Bodily movements are typically accompanied by a decrease in mu and beta rhythms, which is 
greater over the scalp contralateral to a moved hand. This decrease has been labeled ‘event-related 
desynchronization’ or ERD [41, 44]. Its opposite, an increase in rhythm, or ‘event-related 
synchronization’ (ERS) occurs after movement and with relaxation [41]. Especially relevant for use in a 
BCI is that ERD and ERS do not require overt movement, but occur also during motor imagery and 
preparation [32, 45].   

 
Figure 3. Sensorimotor rhythm  BCI (modified from [23]). EEG is recorded over sensorimotor cortex.  Users control the amplitude of a 8-
12 Hz mu rhythm (or 18-26 Hz beta rhythm) to move a cursor to a target at the top of a screen, bottom of a screen or intermediate locations.  
Frequency spectra (top) for the top and bottom targets show that control is clearly focused in the mu rhythm frequency band.   Sample EEG 
traces (bottom) also indicate that the mu rhythm is prominent when the target is at the top and minimal when it is at the bottom [31, 58]. 
 
     Several BCIs based on mu/beta rhythm have been developed since the mid 1980s. Prominent among 
these is the system developed by Wolpaw, McFarland, and their colleagues [31, 57, 58] in which people 
use mu-or beta-rhythm amplitude to move a cursor to targets on a computer screen.  Figure 3 illustrates 



 5
the basic concept behind this BCI.  In this example, the user increases the amplitude of 8–12 Hz mu 
rhythms to move a cursor to a target at the top of the screen or decreases it to move to a target at the 
bottom. Frequency spectra (top) for top and bottom targets show that control is clearly focused in the 
mu-rhythm frequency band. Sample EEG traces (bottom) also show that the mu rhythm is prominent 
with the top target and minimal with the bottom target.  

     With this BCI, users can move the cursor to answer spoken yes/no questions with accuracies of 
95% [36, 59].  Users learn over a series of 40 min sessions to control cursor movement and participate in 
2–3 sessions per week. Most (i.e. about 80%) acquire significant control within 2–3 weeks.  In initial 
sessions, most employ motor imagery (e.g. imagination of hand movements, whole body activities, 
relaxation, etc.) to control the cursor. As training proceeds, imagery usually becomes less important, and 
users move the cursor like they perform conventional motor acts.  That is, they act without consciously 
thinking about the details of execution.   Recent work has concentrated on developing precise one-
dimensional control and on applying it to choosing among up to 8 different targets [33]. Users can also 
achieve independent control of two different mu-or beta-rhythm channels that enables them to move a 
cursor in two dimensions [55, 56].   

Comparison of BCI methods.  Performance on the above three types of BCI was compared in an 
NIH-funded project [2]. Specifically, the SCP-BCI, P300-BCI, and SMR-BCI were compared using a 
within-subject design for seven ALS patients who had not yet entered the final stages of paralysis. All 
patients achieved acceptable performance after 20 sessions with SMR-BCI training, four of the seven 
could spell with the P300-BCI, but none achieved acceptable performance rates with the SCP-BCI. 
Thus, in these patients (all of whom still had functioning vision), SMR-BCI and P300-BCI appeared to 
show the most promising results. Nevertheless, of the three approaches, the SCP-BCI has the most 
extensive track record with ALS patients and may prove to be the best option at later stages of the 
disease.  For example, Birbaumer [2] reports training 32 patients with at various stages of ALS to use 
the SCP-BCI.  Eventually, seven arrived at a state of almost complete paralysis but were able to 
continue to use the BCI. The SCP-BCI needs long training periods, sometimes months in the home of 
the patient (often paralyzed to a degree requiring artificial respiration).  Letter selection speed is slow, 
e.g. one letter per minute, but speed may be less of an issue for late-stage ALS patients [6].  These 
patients have well-preserve cognitive functions (e.g. working memory), and many have considerable 
motivation to communicate [2].  

Support for BCI development 
     All BCIs require software to perform numerous functions. These include recording and storage of 
brain signals, detection and classification of features in the signals, presentation of feedback and other 
stimuli, and overall coordination of all component activities.  Moreover, the BCI must perform many of 
these functions online while being used for communication or control.  To create such a complex set of 
software in its entirety requires considerable time and effort.  Fortunately, there exists a website 
(http://www.bciresearch.org/BCI2000/bci2000.html) providing free software and documentation for a 
general purpose EEG-based system called BCI2000 [49].  This material, along with associated data 
storage and analysis tools, is available to those engaged in BCI research and development.  More than 
100 laboratories are now regular contributors to the BCI 2000 Web site, improving both the hardware 
and software modules. The aim is an inexpensive, easy-to-use, universal, noninvasive BCI that will 
accommodate SCP, P300, SMR, and other electrophysiological measures ─ one that will be used by a 
world-wide net of participants whose data collection and analysis will contribute to the continuous 
improvement and validity of BCI applications. 
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