

Anterior Temporal Involvement in Semantic Word Retrieval: VLSM Evidence from Aphasia

Myrna Schwartz, Dan Kimberg, Grant Walker, Olufunsho Faseyitan, Adelyn Brecher, Gary Dell & Branch Coslett

Versions of this talk were presented at the Academy of Aphasia meeting, Boston, October 2009 and the Neurobiology of Language Conference, Chicago, October 2009.

Computational case-series investigations of picture naming in aphasia

- ♦ Dell, Schwartz, Martin, Saffran & Gagnon (1997) Psych Review
- \diamond Foygel & Dell (2000) *JML*
- ♦ Schwartz & Brecher (2000) Brain & Language
- ♦ Schwartz, Dell, Gahl & Sobel (2006) JML
- ♦ Dell, Martin & Schwartz (2006) JML
- ♦ Kittredge, Dell, Verkuilen & Schwartz (2008) CN
- ♦ Nozari, Kittredge, Dell & Schwartz (in prep)

Semantic-Phonological Model of Aphasic Naming

- Model deviations cluster around zero
- Model explains 94.4% of total variance in naming response proportions

Schwartz, Dell, Gahl & Sobel (2006) JML

Where are the lesions that give rise semantic naming errors?

New case-series (n = 64)

- MRI/CT confirmed unilateral L cortical lesion
- Mn. MPO 68 (range 1-381); 92% were at least 6 months post
- Mn. 58 y.o. (28-78)
- Mn. 14 yrs. education (10-21)

Philadelphia Naming Test (PNT)

175 black and white line drawings of non-unique entities
Varied semantic categories (e.g., manipulable objects, 41%; animals, 15%)
Pictures have high familiarity, name agreement, and image quality
Names range in length from 1 to 4 syllables and in noun frequency from 1 to 2110 tokens per million (Francis and Kucera, 1982)

Semantic Errors

Type	Target	<u>Response</u>
Coordinate	bus	car
Subordinate	flower	rose
Superordinate	necklace	jewelry
Synonym	frog	toad
Associated	COW	milk

Roach A, Schwartz MF, Martin N, Grewal RS, Brecher A. The Philadelphia naming test: Scoring and rationale. Clinical Aphasiology 1996; 24: 121-133.

Nonverbal Comprehension Tests

Pyramids and Palm Trees – Forced 2-choice decision, match picture of probe to picture of semantic associate. 52 trials. (Howard & Peterson, 1992)

Camels and Cactus – Forced 4-choice decision, match picture of probe to picture of semantic associate. 64 trials. (Bozeat et al., 2000)

Participants with aphasia (n = 64)			Norms for healthy controls	
Mean (SD)	Mdn	Low	High	
76.8 (15.2)	81.5	33.3	97.6	Cut-off score 93.8ª
	Participants w Mean (SD) 76.8 (15.2)	Participants with apha Mean (SD) Mdn 76.8 (15.2) 81.5	Participants with aphasia (n = 6 Mean (SD) Mdn Constraints Sand	Participants with aphasis (n = 64)Mean (SD)MdnLowHigh76.8 (15.2)81.533.397.6

	Participants with aphasia (n = 64)				Norms for healthy controls
Test/Measure	Mean (SD)	Mdn	Low	High	
Aphasia Quotient	76.8 (15.2)	81.5	33.3	97.6	Cut-off score 93.8 ^a

	Participants with aphasia (n = 64)			Norms for healthy controls	
Test/Measure	Mean (SD)	Mdn	Low	High	
Aphasia Quotient	76.8 (15.2)	81.5	33.3	97.6	Cut-off score 93.8 ^a
Philadelphia naming test (PNT):					
Prop. Correct	0.69 (.26)	0.8	0.02	0.97	Mn (SD) .97 (.018) ^b
Prop. SemErr (SemErr)	0.03 (.03)	0.03	0.00	0.12	n/a
SemErr/TotErr	0.17 (.15)	0.14	0.00	0.77	n/a

_

	Participants with aphasia (n = 64)				Norms for healthy controls
Test/Measure	Mean (SD)	Medi an	Low	Highest	
Aphasia Quotient	76.8 (15.2)	81.5	33.3	97.6	Cut-off score 93.8 ^a
Philadelphia naming test (PNT):					
Prop. Correct	0.69 (.26)	0.8	0.02	0.97	Mn (SD) .97 (.018) ^b
Prop. SemErr (SemErr)	0.03 (.03)	0.03	0.00	0.12	n/a
SemErr/TotErr	0.17 (.15)	0.14	0.00	0.77	n/a
Nonverbal Comprehension tests:					
Pyramids and palm trees test (pictures; max. 52)	46.4 (5.0)	47.8	24	52	Mn (SD) 51.2 (1.4) ^c
Camel and cactus test (pictures; max. 64)	50.1 (7.6)	51.8	23	61	Mn (SD) 58.4 (3.4) ^d
Composite measure (NVcomp; Mean of z-scores)	04 (1.04)	0.16	-4.0	1.16	n/a

• MRI (n = 34 of 64) - lesions were segmented manually in native space

- MRI (n = 34) lesions were segmented manually in native space
- Lesions were registered to a common template (Colin27) using an automated procedure (Avants *et al.*, 2006; <u>/</u><u>www.picsl.upenn.edu/ANTS/</u>)

- MRI (n = 34) lesions were segmented manually in native space
- Lesions were registered to a common template (Colin27) using an automated procedure (Avants *et al.*, 2006; <u>/</u>
- Inspected by HBC, naïve with respect to the behavioral data

- MRI (n = 34) lesions were segmented manually in native space
- Lesions were registered to a common template (Colin27) using an automated procedure (Avants *et al.*, 2006; / www.picsl.tube.comp.c)
- Inspected by HBC, naïve with respect to the behavioral data

CTs (n = 30) – HBC drew lesion maps directly onto the template

Two VLSM Analyses

<u>Unfiltered</u> – Semantic error scores (SemErr) were mapped to lesions on a voxel-wise basis.

<u>Filtered</u> – (a) NVcomp scores were factored out of the SemErr measure by regression; (b) Residualized SemError scores were mapped to lesions on a voxel-wise basis.

Filtered analysis controls for faulty conceptualization processes that could give rise to SemErr at a pre-lexical stage

VLSM Methods

<u>Unfiltered</u> – At each voxel, a t-test was performed comparing SemErr scores between patients with and without a lesion in that voxel

Filtered – At each voxel a t-test was performed comparing residualized Sem Err scores between patients with and without a lesion in that voxel.

In each analysis, voxels in which fewer than 5 patients were lesioned were excluded.

Correction for multiple comparisons - t-maps were thresholded to control the False Discovery Rate (FDR) at q = 0.01, where q is the expected proportion of false positives among supra-threshold voxels.

Analyses were done using the VoxBo brain imaging package: www.voxbo.org

Voxel-wise Lesion-Symptom Mapping: Coverage

Fig. 2

Fig. 2 Maps depicting lesion overlaps of the 64 subjects in the left hemisphere. Maps A-D are at MNI x coordinates of -60, -54, -48, and -42 respectively. Map E is a single axial slice at z=-27.

Voxel-wise Lesion-Symptom Mapping: Unfiltered (SemErr)

Fig. 4

Fig. 4. Voxel-wise t-value map. Supra-threshold voxels rendered on red (t = 3.27) to yellow (t > 5) scale.

Sub-threshold voxels rendered on scale of green (just below threshold) to blue (t < 0 or below).

Voxel-wise Lesion-Symptom Mapping: Unfiltered (SemErr)

Fig. 4

Voxel-wise Lesion-Symptom Mapping: Filtered

(residualized SemErr)

Controlling for conceptual processing weakened effects in all three areas

Only voxels in mid to anterior MTG remain significant.

ATL effect survives lesion-size correction

Uncorrected t-test threshold

Partial correlations:

Region	Partial Correl ^a	P-value
BA 21	.34	.006
BA 38	.33	.008

^a % damage w. SemErr, partialling out total lesion volume

Negative Findings for Wernicke's Area

Filtered

Negative Findings for Wernicke's Area

Filtered

... despite adequate coverage there

Iowa lesion studies: "Convergence regions" for lexical retrieval in L-ATL

Damasio, Grabowski, Tranel, Hichwa, & Damasio, *Nature* (1996)

Meta-analysis of imaging studies (Indefrey & Levelt, 2004)

Meta-analysis of imaging studies (Indefrey & Levelt, 2004)

Site of maximal atrophy in semantic dementia

DM

C. J. Mummery, K. Patterson, R. J. S. Wise, R. Vandenbergh, C. J. Price and J. R. Hodges. *Brain (1999)*, **122**, **61–73**

Conclusions - 1

- Specific and necessary role for L-ATL in mapping concepts to words in production
- Role may be to convey fine-grained distinctions to the lexical system
 - Which features of a concept are more important, which less important, for selecting the right name from a competing set
 - Information that in the interactive 2-step model is expressed in the weighted connections between features and lemmas
- Hypothesize that damage to left ATL blunts this finer grain of differentiation, thereby raising the probability of semantic errors

Conclusions - 2

- In line with evidence from convergence zone theory, functional neuro-imaging, and
- Fails to support causal link between semantic error production and Wernicke's area dysfunction (Hopkins acute stroke studies: DeLeon et al., 2007; Cloutman et al., 2009; others)
- Acute and chronic damage may have different effects on the brain's network for concept-word mapping in production

We gratefully acknowledge the dedicated patients and families who made this study possible

And the dedicated labmates who helped out with recruitment, and behavioral testing and scoring:

Laura Barde Laurel Brehm Jacqueline Cairone Krista Cullen Jennifer Gallagher Marisa Gauger A. Cris Hamilton Jesse Hochstadt Rachel Jacobson Laura MacMullen Michelle Rapp Paula Sobel

And the NIDCD, which funds this work

The Neuro-Cognitive Rehabilitation Research Network (NCRRN) offers consultation and pilot funds

Visit ncrrn.org

