

Lesion-Symptom Mapping Workshop

<u>Speakers:</u> Frank Garcea Harrison Stoll Austin Wild Organizer: Aaron Wong

Join the discussion

- For those joining us remotely, we have muted incoming audio to reduce background noise
- If you have questions, please use the chat window

Join the discussion

- For those joining us remotely, we have muted incoming audio to reduce background noise
- If you have questions, please use the chat window
- We will also take questions after the session via email or twitter

Lesion-Symptom Mapping Pipeline

Software packages:

- SVR-LSM GUI (Matlab): <u>https://github.com/atdemarco/svrlsmgui</u>
- SVR-LSM (R): <u>https://rdrr.io/github/dorianps/LESYMAP/man/lsm_svr.html</u>

To follow along:

- MRIcron: https://www.nitrc.org/frs/?group_id=152
- Materials: <u>https://mrri.org/lesion-symptom-mapping-workshop-series/</u>

VLSM: A review and critique

- Compare behavioral scores of those with lesions and those without
 - Compute test statistic (e.g., t-value) to derive a p-value
- Major limitations:
 - Assuming each voxel is independent of one another
 - Voxels are typically correlated with one another (e.g., vasculature)
 - Running thousands of tests and increasing potential for false positives
 - Correction techniques might be removing some of the true signal
 - Different voxels have different lesion to no lesion ratios
 - Those with more lesions have higher power, biasing results

Multivariate LSM: Overview

- Consider multiple voxels at once when determining relationship between lesion location and behavior
 - Reduce # of tests
 - Consider relationship between voxels when computing significance
 - No longer have to worry about uneven distribution
- Approaches:
 - Support Vector Regression (SVR-VLSM)
 - Sparse Canonical Correlation Analysis for Neuroimaging (SCCAN)

(Zhang et al. 2014)

SVR-LSM: Conceptual overview

- Regression equation with voxels as IV and behavior as DV
 - Output is a beta value for each voxel
- Machine-learning based approach to help solve model
 - High amount of collinearity between neighboring voxels
 - High number of IVs relative to DVs
- Need to constrain model (hyperparameters) and transform it to a nonlinear space
 - Critical point: our beta values are nonlinear

Model Validation (k-fold crossvalidation)

File N	Aethod Opt	ions Help		-	r
Analys	is Configuration			-	
	Analysis name:	Unnamed			
	Output folder:	output	Select		
	Lesion folder:	lesion_imgs	Select		
	Score file:	PNT.csv	Select		
		19/19 subjects have les	ion files.		
	Score name:	RandValue	\$		
				10:08:23 Checking if necessary files are installed 10:08:23 SPM12 is installed and visible on MATLAB's path.	
				10:08:23 libsvm is installed and visible on MATLAB's path. 10:08:23 MATLAB Statistics Toolbox license found.	
				10:08:23 Parallelization available: Distributed Computing Toolbox installed, licensed, and > 1 core. 10:08:23 All necessary functions are available	
				10:08:23 Retrieved default parameters	
					3
					_

(DeMarco et al. 2018)

SVR-LSM: Factors to consider

- Interested in high or low values
- Controlling for Total Lesion Volume (TLV)
 - DTLVC: Take value of voxel and divide by square root of TLV
 - Regress on Lesion: Regress TLV out of voxels (use residuals in model)
 - Regress on Behavior: Regress TLV out of behavior (use residuals in model)
 - Regress on both: Regress TLV out of both behavior and voxels (use residuals in model)
- Lesion Threshold value
- Other covariates

File Method Options Help	<u>د</u>
Analysis Configuration	Hypothesis Directionality
Analysis name: Unnamed Output folder: output Select	High scores are good
Lesion folder: lesion_imgs Select	Lesion Volume Correction
Score file: PNT.csv Select	Regress on Both
Score name: RandValue	Lesion Threshold: 10
Covariates Apply to: Behavioral Score Lesion Data Covariates:	10:08:23 Checking if necessary files are installed 10:08:23 SPM12 is installed and visible on MATLAP's path. 10:08:23 Bitswin is installed and visible on MATLAP's path. 10:08:23 MATLAP Statistics Toolbox license found. 10:08:23 Parallelization available: Distributed Computing Toolbox installed, licensed, and > 1 core. 10:08:23 All necessary functions are available 10:08:23 Retraved default parameters
RandValue + - 19/19 subjects have required scores.	

SVR-LSM: Conceptual overview

• How do we determine significance?

SVR-LSM: Conceptual overview

- How do we determine significance?
 - Run X number of permutations (10k standard)
 - Build null distribution
 - Test if a given voxel's beta value is significantly different from null distribution
 - Creates a problem of many tests

File Method Options Help		Permutation testing			
Analysis coninguration Analysis name: Unnamed Output folder: output Select	Hypothesis Directionality High scores are good	Permutation testing CFWER Number of permutations 10000 Voxelwise P .005 Clusterwise P .05			
Score file: PNT.csv Select 2 19/19 subjects have lesion files. Score name: RandValue	Lesion Threshold: 10	Run Analysis View Results			
Covariates Apply to: Behavioral Score Lesion Data Covariates: RandValue + -	10:08:23 Checking if necessary files are in 10:08:23 SPM12 is installed and visible or 10:08:23 Bbsvm is installed and visible or 10:08:23 MATLAB Statistics Toolbox (ice 10:08:23 Paralelization available: Distribut 10:08:23 A linecessary functions are avail 10:08:23 Retrieved default parameters	nstalled n MATLAB's path. IMATLAB's path. nse found. ted Computing Toolbox installed, licensed, and > 1 core. able			
19/19 subjects have required scores.					

0	Unsa	aved analysis named 'Unnamed'*	
File Method Optic	ons Help		Permutation testing
Analysis name: Output folder: Lesion folder:	Unnamed output Select	Hypothesis Directionality High scores are good Lesion Volume Correction Regress on Both	Permutation testing CFWER Number of permutations 10000 v (mm ^a) FWER .05
Score name:	19/19 subjects have lesion files. RandValue	Lesion Threshold: 10	Run Analysis View Results
Covariates Apply to: Beha Covariates:	avioral Score Lesion Data	10:08:23 Checking if necessary files are in 10:08:23 SPM12 is installed and visible or 10:08:23 IBsvm is installed and visible or 10:08:23 MATLAB Statistics Toolbox lice 10:08:23 Parallelization available: Distribu 10:08:23 All necessary functions are avail 10:08:23 Retrieved default parameters	installed on MATLAB's path. n MATLAB's path. nase found. ted Computing Toolbox installed, licensed, and > 1 core. liable
Rand ¹	Value 🗘 + -		

Figure 1. Distribution of Contical and Subcontical Damage in each LCVA Participant.

Registrycoue	111 70
S1	0.9
S2	0.7
S3	0.5
S4	0.7
S5	0.5
S6	0.7
S7	0.5
S8	0.3
S9	0.8
S10	0.9
S11	0.8
S12	0
S13	0.6
S14	0.7
S15	0
S16	0.9
S17	1
S18	0.6
S19	0.7
S20	0.8
S21	0.5
S22	0.8
S23	0.4
S24	0.5
S25	0.4
S26	0.6
S27	1
S28	0.6
S29	0.7
S30	0.6
S31	0.7
S32	0.3
S33	0.3
S34	0.9
S35	0.5

RegistryCode HP%

Garcea et al., in prep.

Post-analysis Processing

Garcea, Stoll, & Buxbaum, 2019, Cortex

enable obe	connerbeore
3 76	9.00
o < .05	p < .001

Post-analysis Processing

- 1. Multiple comparison correction.
 - 1. SVR-LSM toolbox
 - 2. Custom matlab scripts
- 2. Cluster-size thresholding the voxelwise z-map.

3. Viewing results (and differences) before and after cluster correction.

4. Independently label your peaks and clusters (AAL template)

SVR-LSM:

Multiple comparisons corrections

- 1. Raw beta values as the first output in SVR-LSM analysis.
 - Uninterpretable by itself.

Gesturing Tool Use, raw beta values (min, 0; max, 10)

SVR-LSM:

Multiple comparisons corrections

- 1. Raw beta values as the first output in SVR-LSM analysis.
 - Uninterpretable by itself.
- 2. Voxel-level correction (FWER or FDR).
 - Permutation testing to obtain null distribution in each voxel; then z-score your true data relative to null data.

Gesturing Tool Use, voxelwise Z-value min, 1.65, p < .05, one-tailed

SVR-LSM:

Multiple comparisons corrections

- 1. Raw beta values as the first output in SVR-LSM analysis.
 - Uninterpretable by itself.
- 2. Voxel-level correction (FWER or FDR).
 - Permutation testing to obtain null distribution in each voxel; then zscore your true data relative to null data.
- 3. Cluster-level correction (FWER or FDR)
 - Identify clusters of significant voxels
 - Remove clusters k < X contiguous voxels

function clusterizeMap		
% this script will remove voxels that do not survive cluster level correcti	.on	
% clusters are determined based on a k value, which the user must input.		
% that k value is equivalent to the number of continguous 1 mm^3 anatomical	. voxels that m	nust surpass that
% threshold to survive correction.		
%% k is your threshold for determining cluster extent size.		
k = 500;		

Gesturing Tool Use, voxelwise Z-value min, 1.65 (p < .05, one-tailed), 500 voxel cluster min.

Flanker Task Congruent < < < < <

Incongruent > > < > >

Garcea et al., in prep.

SVR-LSM:

Multiple comparisons corrections

- 1. Raw beta values as the first output in SVR-LSM analysis.
 - Uninterpretable by itself.
- 2. Voxel-level correction (FWER or FDR).
 - Permutation testing to obtain null distribution in each voxel; then z-score your true data relative to null data.
- 3. Cluster-size threshold
 - Identify clusters of significant voxels
 - Remove clusters k < X contiguous voxels
- 4. Cluster-level size correction (DeMarco et al 2018)
 - Identify clusters of significant voxels
 - Calculate p values from the beta values estimated on each random permutation, then identify clusters of significant voxels
 - Find the size of the largest cluster that is significant "by chance"
 - This provides a null distribution of cluster *sizes*
 - Compare our real clusters to this distribution to identify those clusters that are significantly "large enough" in an FWER sense

Post-analysis Processing

- 1. Multiple comparison correction.
 - 1. SVR-LSM toolbox
 - 2. Custom matlab scripts
- 2. Cluster-size thresholding the voxelwise z-map.
- 3. Viewing results before and after cluster correction.

4. Independently label your peaks and clusters (AAL template)

ROIs and your whole-brain maps

- Now that we have a whole-brain map, let's identify peaks and voxel coordinates.
- Matlab scripts take as input a statistical map, an atlas map, and ask for a threshold of significance.

```
function [VoxelStats] = ExtractVoxelStats
%% set up parameters
thresh = input('what is your voxel threshold to determine significance?');
%% first map
[file,path] = uigetfile('*.nii', 'select run1 map 1');
Volume1 = spm_vol(fullfile(path,file));
[SubMap1,XYZ] = spm_read_vols(Volume1);
statmap = reshape(SubMap1,[size(SubMap1,1)*size(SubMap1,2)*size(SubMap1,3),1]);
statmap = abs(statmap);
%% second map
[file,path] = uigetfile('*.nii.gz', 'select run1 map 2');
Volume2 = spm_vol(fullfile(path,file));
[SubMap2,XYZ] = spm_read_vols(Volume2);
broadmanmap = reshape(SubMap2,[size(SubMap2,1)*size(SubMap2,2)*size(SubMap2,3),1]);
```

ROIs and your whole-brain maps

- Now that we have a whole-brain map, let's identify peaks and voxel coordinates.
- Matlab scripts take as input a statistical map, an atlas map, and ask for a threshold of significance.
- Then identify the peak voxel in the statistical map (strongest supra-threshold value) in every subregion of an atlas map.

```
%% let's loop through brodmann areas to get coordinates
brodmanregions = unique(broadmanmap);
counter = 0;
                                     Identifies all unique subregions within an atlas map
VoxelStats = [];
% main loop
for broadmani = 1:length(brodmanregions)
    if brodmanregions(broadmani)>0
                                                                       Identify all voxels in stat
       %% get voxelwise coordinates for each brodmann area
                                                                       map that overlap with
       %counter = counter + 1;
        tmpvoxindices = find(broadmanmap==brodmanregions(broadmani));
                                                                       subregion in atlas map.
        if size(find(statmap(tmpvoxindices)>thresh),1) > 0
           counter = counter + 1;
           VoxelStats.broadman(counter).data = statmap(tmpvoxindices);
           %% let's get the peak coordinate in each broadman ROI.
                                                                    Find peak voxel within the
           tmpdata = VoxelStats.broadman(counter).data;
           descendingpeaks = sortrows(tmpdata,'descend');
                                                                    subset of voxels in subregion
            peakvalue = descendingpeaks(1);
           voxelindex = find(statmap(tmpvoxindices) == peakvalue);
            [I,J,K] = ind2sub([size(SubMap2,1),size(SubMap2,2),size(SubMap2,3)],tmpvoxindices(voxelindex));
           peakvox = [I,J,K];
           %% simple transformation from voxel space to coordinate space
           mnicoord(:,1) = peakvox(:,1) - 90;
                                                                         Convert the peak voxel to
           mnicoord(:,2) = peakvox(:,2) - 125;
           mnicoord(:,3) = peakvox(:,3) - 71;
                                                                         MNI coordinates.
           mnicoordsize = size(mnicoord,1);
           if size(mnicoord,1) > 1; mnicoord = ceil(mean(mnicoord)); end
           % Now calculate stats that we need for our excel file.
           VoxelStats.ROIStats(counter,1) = size(VoxelStats.broadman(counter).data,1);
           VoxelStats.ROIStats(counter,2) = size(find(VoxelStats.broadman(counter).data>thresh),1);
           VoxelStats.ROIStats(counter,3) = brodmanregions(broadmani);
           VoxelStats.ROIStats(counter,4) = mnicoord(1);
                                                               Give us information about peak
           VoxelStats.ROIStats(counter,5) = mnicoord(2);
           VoxelStats.ROIStats(counter,6) = mnicoord(3);
                                                               values (cluster size, peak voxel
            VoxelState ROIState(counter 7) - neakyalue:
 % write out data in excel
  xlswrite(['VoxelStats_with_' num2str(thresh) '_threshold.xlsx'],VoxelStats.ROIStats);
```


	A	В	С	D	E	F	G	н	
1	Label	Total Voxels	Num of Vox in ROI	AAL ID Num	х	Y	Z	Peak Value	Num of Vox w Peak Value
2	1 Precentral_L 2001	28174	3496	1	-35	-23	57	3.3528	6
3	3 Frontal_Sup_L 2101	28915	26	3	-31	-6	69	2.6046	5
4	7 Frontal_Mid_L 2201	38722	12	7	-30	-3	66	1.7007	12
5	17 Rolandic_Oper_L 2331	7939	1672	17	-47	-17	14	3.5401	5
6	29 Insula_L 3001	15025	1056	29	-39	5	-4	3.3528	9
7	49 Occipital_Sup_L 5101	10791	3	49	-25	-69	35	1.9034	3
8	51 Occipital_Mid_L 5201	25989	1429	51	-38	-67	33	3.0115	1
9	57 Postcentral_L 6001	31053	14486	57	-44	-13	40	3.719	3
10	59 Parietal_Sup_L 6101	16519	367	59	-31	-46	64	3.1559	2
11	61 Parietal_Inf_L 6201	19447	5558	61	-49	-26	43	3.719	5
12	63 SupraMarginal_L 6211	9907	6802	63	-59	-31	32	3.719	7
13	65 Angular_L 6221	9313	4019	65	-50	-60	31	3.719	1
14	71 Caudate_L 7001	7682	35	71	-21	18	15	2.7478	1
15	73 Putamen_L 7011	7942	323	73	-29	-14	14	2.5006	4
16	77 Thalamus_L 7101	8700	1	77	-23	-18	8	2.0141	1
17	79 Heschl_L 8101	1804	1017	79	-44	-14	12	3.1559	2
18	81 Temporal_Sup_L 8111	18307	6221	81	-56	-26	15	3.719	46
19	83 Temporal_Pole_Sup_L 8121	10228	337	83	-46	11	-16	2.4625	1
20	85 Temporal_Mid_L 8201	39353	1680	85	-66	-41	10	3.5401	2
21	89 Temporal_Inf_L 8301	25647	100	89	-54	-48	-4	2.2292	21
22									