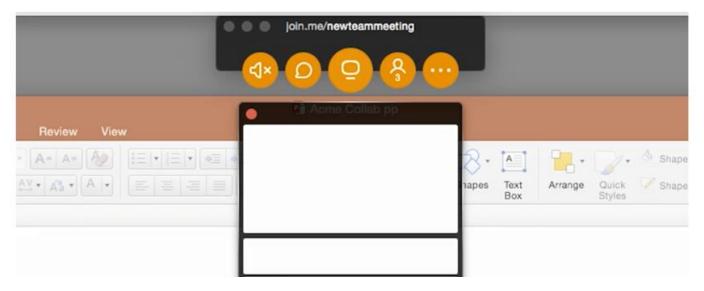


Lesion-Symptom Mapping Workshop



<u>Speakers:</u> Frank Garcea Harrison Stoll Austin Wild Organizer: Aaron Wong

Join the discussion

- For those joining us remotely, we have muted incoming audio to reduce background noise
- If you have questions, please use the chat window

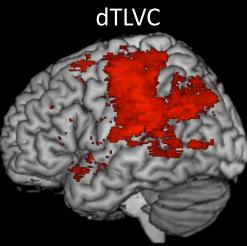
Join the discussion

- For those joining us remotely, we have muted incoming audio to reduce background noise
- If you have questions, please use the chat window
- We will also take questions after the session via email or twitter

Lesion-Symptom Mapping Pipeline

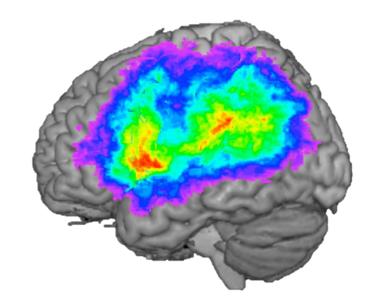
Software packages:

- SVR-LSM GUI (Matlab): <u>https://github.com/atdemarco/svrlsmgui</u>
- SCCAN (R): <u>https://github.com/dorianps/LESYMAP/wiki/SCCAN-questions</u>

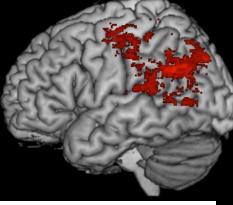

Lesion-Symptom Mapping approaches

- VLSM
 - Perform a t-test at each voxel
 - Large number of tests, (incorrectly) assumed to be independent
- SVR-LSM
 - Perform a single multivariate regression, with significance determined using permutation testing
 - P values still determined at the voxel level
 - Unclear how to properly correct for multiple comparisons
 - Unclear how to properly correct for lesion size

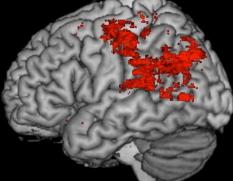

SVR-LSM: Correcting for lesion volume


- dTLVC: normalize lesion status by 1/sqrt(TLV)
- Regress on Lesion: Regress lesion status on TLV, use residuals
- Regress on Behavior: Regress behavior on TLV, use residuals
- Regress on Both

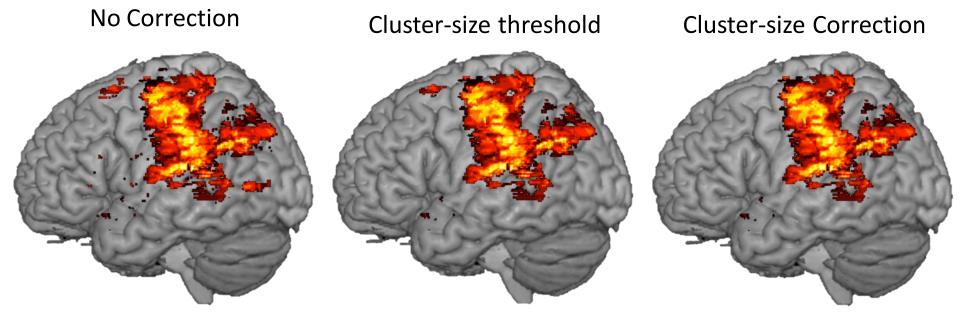
#	Method	Corrects behavior	Corrects lesion data
1	No correction	×	×
2	dTLVC (Zhang et al., 2014)	×	Partial
3	Regress on Behavior	\checkmark	×
4	Regress on Lesion	×	\checkmark
5	Regress on Both	\checkmark	\checkmark



Regress on Lesion



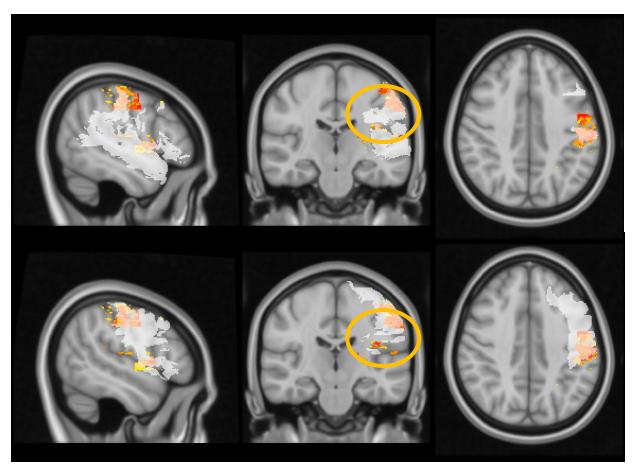
Regress on Behavior

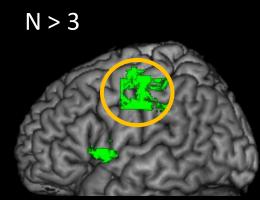

Regress on Both

SVR-LSM:

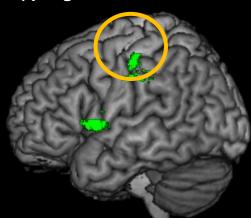
Correcting for multiple comparisons

- Voxel-level correction (FDR, FWER)
- Cluster-size thresholding (minimum contiguous cluster size)
- Cluster-level correction (FDR, FWER)
- Cluster-size correction

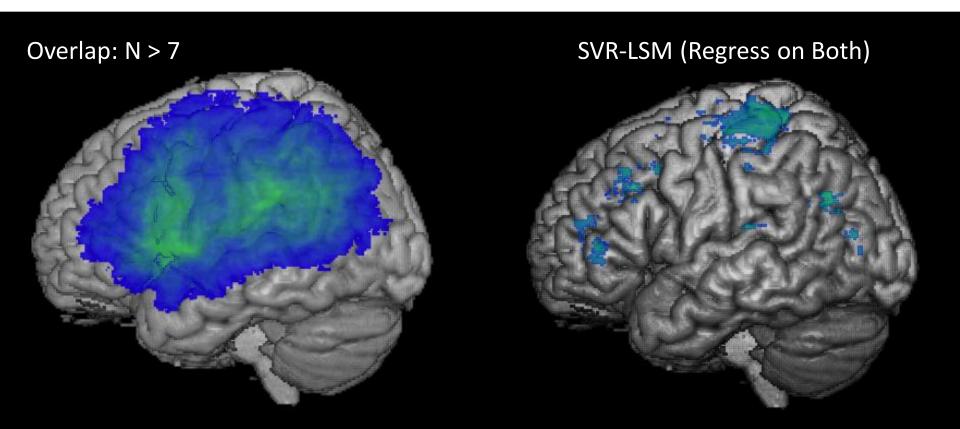

SVR-LSM:


Correcting for multiple comparisons

- Voxel level corrections can be anticonservative for small sample sizes and overly conservative at large sample sizes
- Cluster-size thresholding may not prevent spurious clusters
- Very rarely do clusters survive cluster-size correction
 - This approach considers only cluster size, not cluster significance
 - A large cluster with p = 0.05 observed by chance will outweigh a small cluster with p = 0.00001
 - This will wipe out the smaller clusters that SVR-LSM is supposed to be better at identifying


SVR-LSM: Boundary Effects

• A few subjects can strongly influence the outcome (e.g., at low N)



N > 9

SVR-LSM: Boundary Effects

 Significant regions sometimes follow the edges of the distribution (N = 74)

SVR-LSM

- Theoretically an improvement over VLSM
- In practice, SVR-LSM is not without its own set of problems
- Is SVR-LSM the right tool for low N?
- We try to look for consistency across analyses/correction techniques (but does this invalidate your stats?)

> Know your data!

Multivariate LSM

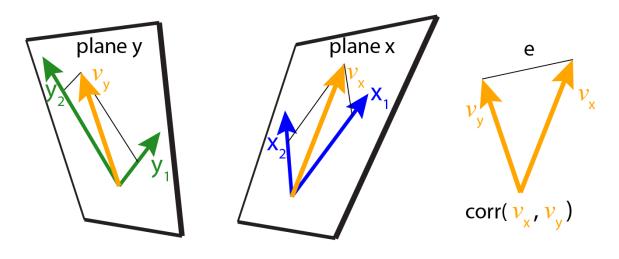
- SVR-LSM
 - Multivariate beta value calculation, voxel-level significance testing
- SCCAN
 - Multivariate weight calculation, map-level significance testing

Sparse Canonical Correlation Analysis for Neuroimaging (SCCAN)

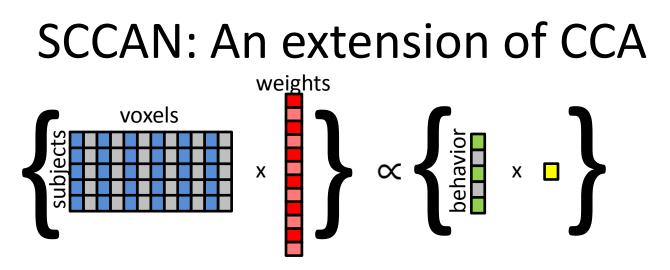
RStudio					
] 🔹 🚰 🖌 🔒 🚔 🖗 Co to file/function 🔄 🔡 🖌 Addins 🗸 🛞 Project: (None)					
SccanBD.R × □	Environment History				
	🕣 🔒 📑 Import Dataset 🔹	- 🔏 📃 List - 🕲			
1 # SCANN script	🛑 Global Environment 👻	Q			
2 # Written by Harrison Stoll on October 2nd 2017	Data				
3 4 # Load necessary packages	🔘 svr_gs	20 obs. of 11 variables			
5	Values				
6 library("ITKR", lib.loc="/Library/Frameworks/R.framework/Versions/3.4/Resources/library")	CA	"/Users/mrri/Desktop/CDA/Behavior/CA_Behavior.txt"			
<pre>7 library("ANTSRCore", lib.log="/Library/Frameworks/R.framework/Versions/3.4/Resources/library")</pre>	CSG.Gcong	"/Volumes/Data HD/Laurels Group/Users/Stoll.Harrison/data///Beh			
8 library("ANTSR", lib.loc="/Library/Frameworks/R.framework/Versions/3.4/Resources/library") 9 library("LESYMAP", lib.loc="/Library/Frameworks/R.framework/Versions/3.4/Resources/library")	CSG.Lesions	chr [1:131] "/Volumes/Data HD/Laurels Group/Users/Stoll.Harriso			
<pre>5 fibialy(lbbiar , fbfib- / lbbialy) falleworks k.fiallework /verbiols/s.e/kebources/fibialy) 10</pre>	CSGdata	"/Volumes/Data HD/Laurels Group/Users/Stoll.Harrison/data//"			
11 # Set location where files (i.e., scan and behavorial) will come from.	Data	"/Users/mrri/Desktop/CDA"			
12	Lesions	chr [1:67] "/Users/mrri/Desktop/CDA/Lesions/MR0083.nii.gz"			
13 Data = file.path("/Users/mrri/Desktop/RodyDot")	lesydata	"/Library/Frameworks/R.framework/Versions/3.4/Resources/library			
<pre>14 lesydata = file.path(find.package('LESYMAP'),'extdata') 15</pre>	🔘 lsm.CA	List of 8			
16 # Set location of where lesion and behaviorial data will come from. Make sure behaviorial data is in a	🕖 lsm.Gcong	List of 5			
17 # .txt file (best way to do this is to copy the data from an excel document into a word document, make sure	🔘 reg	List of 12			
18 # sure though you paste the data as 'Unformatted Text' via paste special, then save the word document as a	template	<object null="" pointer="" with=""></object>			
19 # file) and make sure that your lesion files are in .nii.gz format. Finally your lesion files should be in 20 # order as the behaviorial data in the .txt file (i.e., first lesion in folder should be first behaviorial					
20 worker as the behaviorial data in the stat file (i.e., filst lesion in folder should be filst behaviorial	Files Plots Packages H	elp Viewer			
22 #LESYMAP ASSUMES YOU ARE INTERESTED IN LOWER VALUESso it usese lower scores to predic lesion locations					
23					
1:1 (Top Level) ≎ R Script ≎	R: Leions to Symptom Mapping i	n K • Find in Topic			
Console ~/	Leions to Symptom Mapping in R				
		\bigcirc			
	Documentation	for package 'LESYMAP' version 0.0.0.9003			
	DESCRIPTION file. Package NEWS.				
	Help Pages				
	<u>.createFolds</u> <u>BM</u> <u>BMfast</u>	createFolds Massive Brunner-Munzel tests Fast Brunner-Munzel tests (v1)			

Canonical Correlation Analysis (CCA)

• Say we have two sets of variables:


$$\mathbf{x} = \{x_1, x_2\}$$

 $\mathbf{y} = \{y_1, y_2\}$

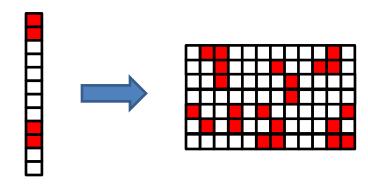

 $\mathbf{y} = \{\mathbf{y}_1, \mathbf{y}_2\}$

We define some **a** and **b** such that

$$v_{x} = \mathbf{a}^{\mathsf{T}}\mathbf{x}$$

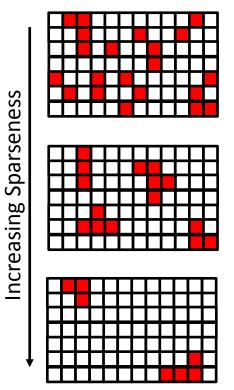
 $v_{y} = \mathbf{b}^{\mathsf{T}}\mathbf{y}$

 We will choose a and b that maximize the <u>correlation</u> between v_x and v_y



- We have a matrix of voxels on one hand, and a vector of behavior on the other
- We look for a [pair of] basis (feature weight) vectors such that the correlation of the projected voxel and behavioral data into that basis set is maximized
 - We require that basis vectors be sparse, i.e. that most of the feature weights are zero
 - Weights are smoothed, and isolated voxels are set back to 0

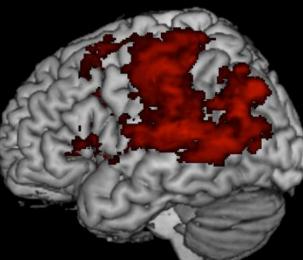
SCCAN: How it works


- The basis vector we identified serves as our feature weights (arranged to create a 3D map of voxel weights)
 - Larger weight means a stronger voxel-behavior relationship
 - We do NOT get voxel-level statistical values
- The extent of the map depends on the sparseness value

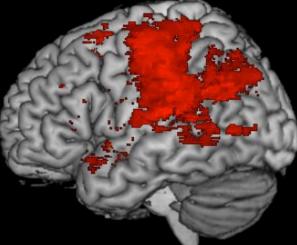
SCCAN: How it works

Determining sparseness

- Iterative cross-validation approach find the sparseness value that maximizes prediction accuracy in cross-validation
 - Penalty for larger sparseness values (prefer a more sparse feature-weight vector)
 - Sparseness also affects neighboring feature weights (not quite analogous to threshholding a beta map)
- Cross-validation gives us one p value for the entire map
 - This tells us if the map is interpretable or random

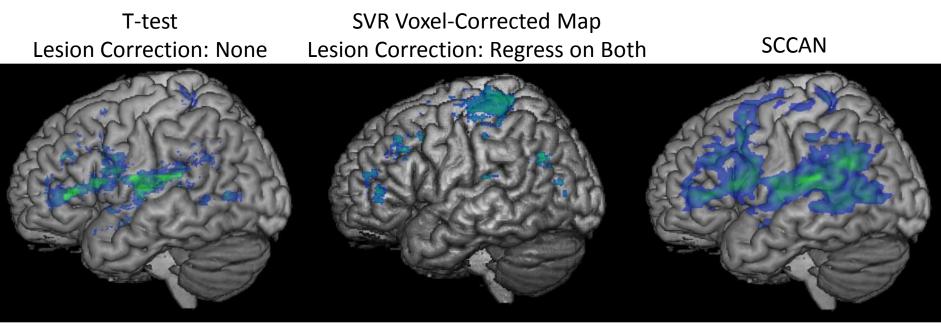


• This is the *opposite* of SVR-LSM

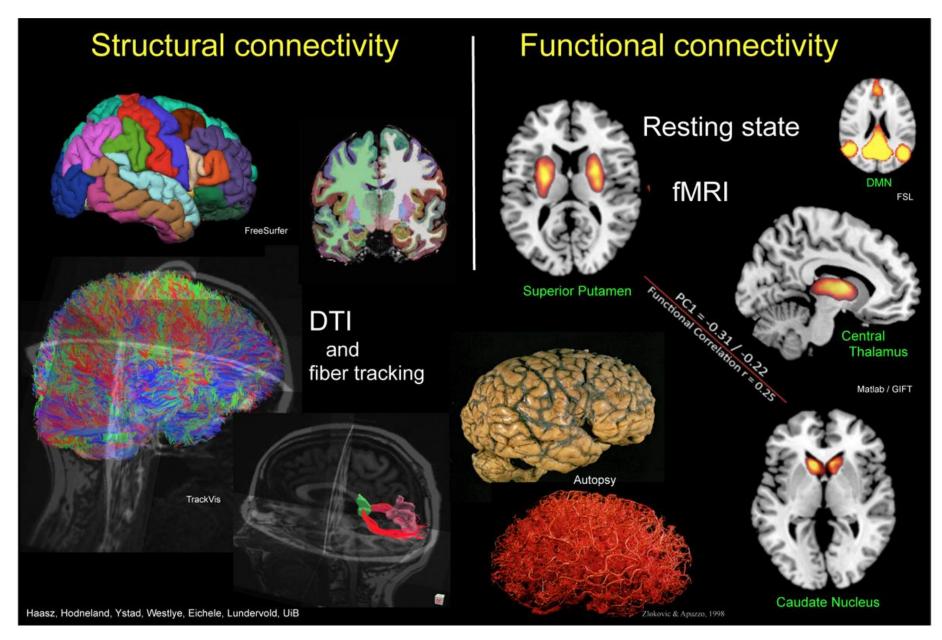

Running SCCAN

	<pre>> lsm.MA = lesymap(Lesions, MA, method = 'sccan', optimizeSparseness=TRUE, sparsenessPenalty = .01) 12:00:01 Purvises LESYMAD 0.0.0.0221</pre>		
	13:09:01 Running LESYMAP 0.0.0.9221 13:09:01 Checking a few things		
	13:09:01 Loading behavioral data 68 scores found.		
	13:09:01 Filenames as input, checking lesion values on 1st image 13:09:01 Detected unusual lesion values, loading files into memory to fix		
	3:09:02 Detected lesion value above 1. Rebinarizing 0/1		
	:09:05 SCCAN method: ignoring patch, nperm, and multiple comparison		
	13:09:05 Secarching voxels lesioned in >= 10% subjects 296404 found 13:09:06 noPatch true - Patches will not be used		
	13:09:06 Computing lesion matrix 68x296404		
	13:09:10 Running analysis: sccan		
	Searching for optimal sparseness:		
	lower/upper bound: -0.9 / 0.9		
	cvRepetitions: 3		
	nFolds: 4		
	sparsenessPenalty: 0.01		
	optim tolerance: 0.03		
	13:09:12 Checking sparseness -0.212 CV correlation 0.0347 (0.684) (cost=0.967)		
	13:31:10 Checking sparseness 0.212 CV correlation 0.169 (0.571) (cost=0.833)		
	13:48:40 Checking sparseness 0.475 CV correlation 0.185 (0.522) (cost=0.820)		
	14:00:40 Checking sparseness 0.413 CV correlation 0.183 (0.537) (cost=0.821)		
	14:15:31 Checking sparseness 0.523 CV correlation 0.186 (0.513) (cost=0.819)		
	14:25:34 Checking sparseness 0.667 CV correlation 0.192 (0.484) (cost=0.814)		
	14:31:25 Checking sparseness 0.756 CV correlation 0.196 (0.469) (cost=0.812)		
	14:37:13 Checking sparseness 0.811 CV correlation 0.199 (0.463) (cost=0.810)		
	14:43:00 Checking sparseness 0.845 CV correlation 0.201 (0.457) (cost=0.807)		
	14:48:50 Checking sparseness 0.866 CV correlation 0.202 (0.452) (cost=0.807)		
	14:55:51 Checking sparseness 0.879 CV correlation 0.202 (0.451) (cost=0.807)		
	15:04:02 Checking sparseness 0.856 CV correlation 0.201 (0.453) (cost=0.807)		
	15:11:00 Checking sparseness 0.866 CV correlation 0.202 (0.452) (cost=0.807)		
	Found optimal sparsenes 0.866 (CV corr=0.202 p=0.0983)		
	WARNING: Poor cross-validated accuracy, returning NULL result.		
	15:18:11 Preparing images		
	15:18:11 Logging call details		
	15:18:11 Done! 2.2 hours		

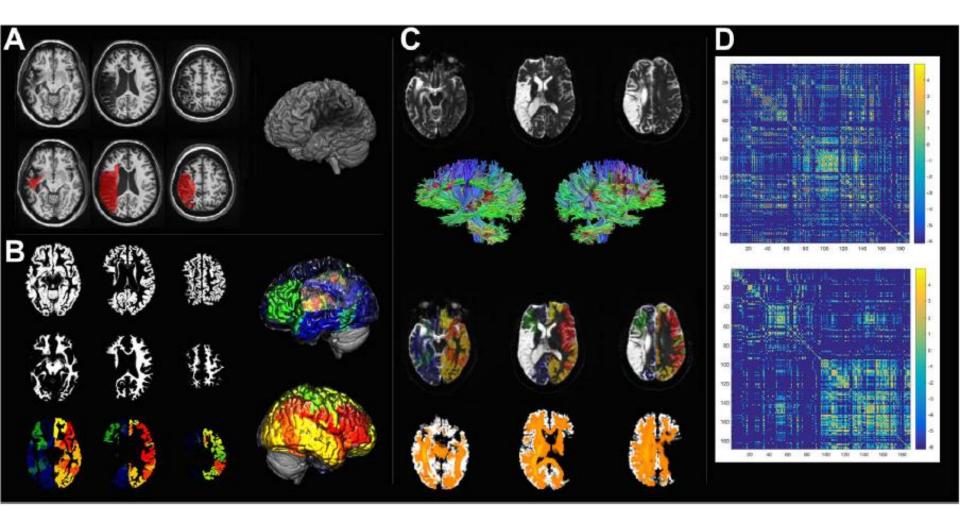
SCCAN



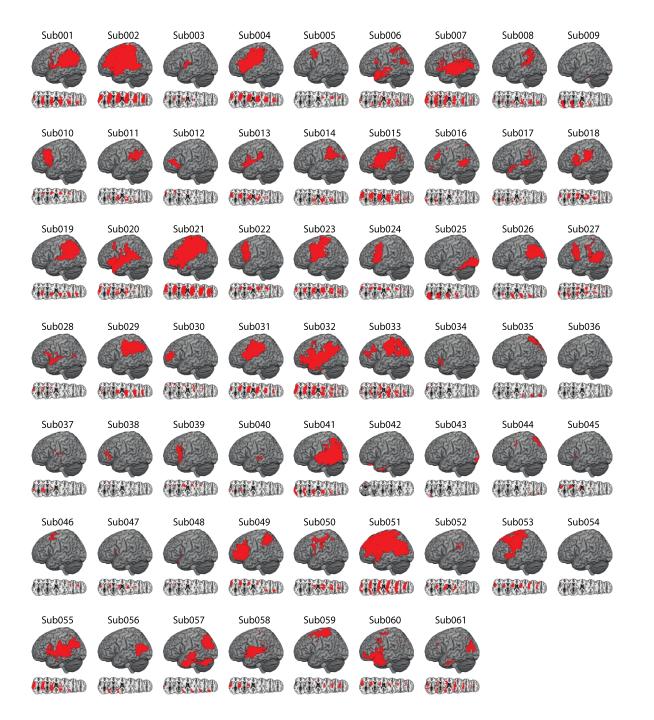
SVR-LSM (dTLVC)

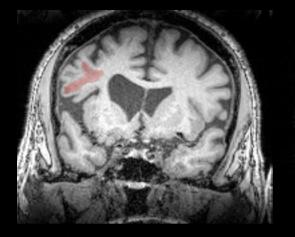

SCCAN versus other methods

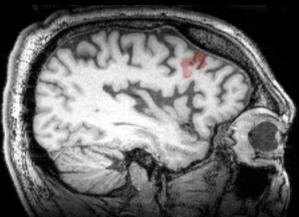
 SCCAN often finds similar or more significant voxels compared to other methods

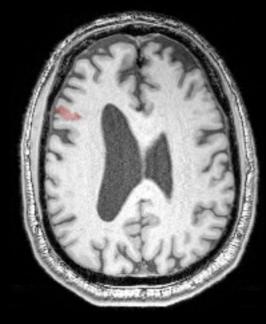


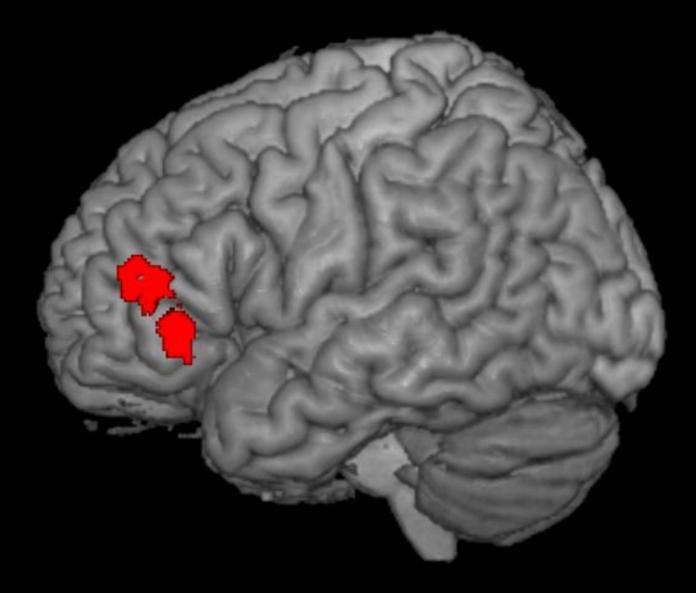
- How do we decide these findings are real and not spurious?
 - No total lesion volume correction by default
 - No voxel-level multiple-comparisons correction necessary
 - Built-in minimum cluster size; should we still threshold post-hoc?

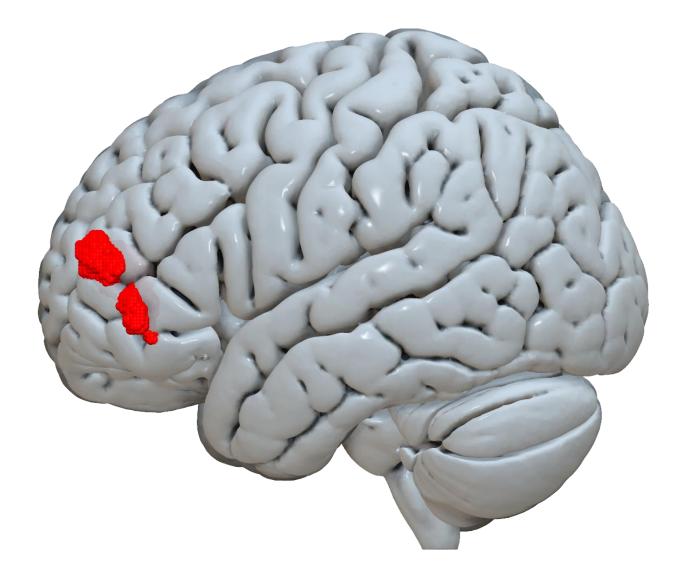

Connectome-based Lesion Symptom Mapping

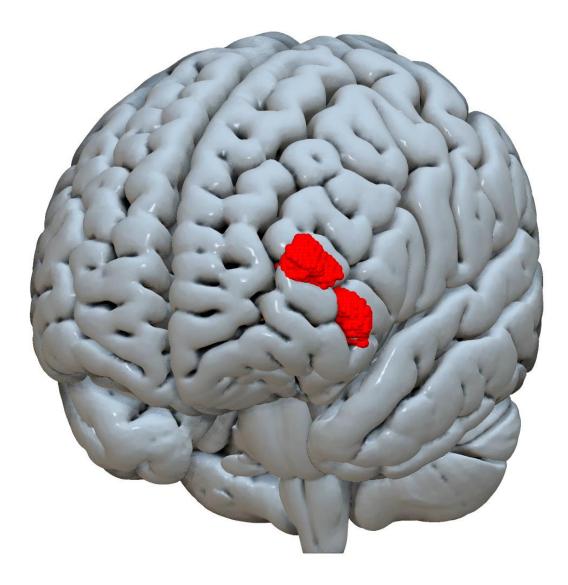

Connectome-based Lesion Symptom Mapping

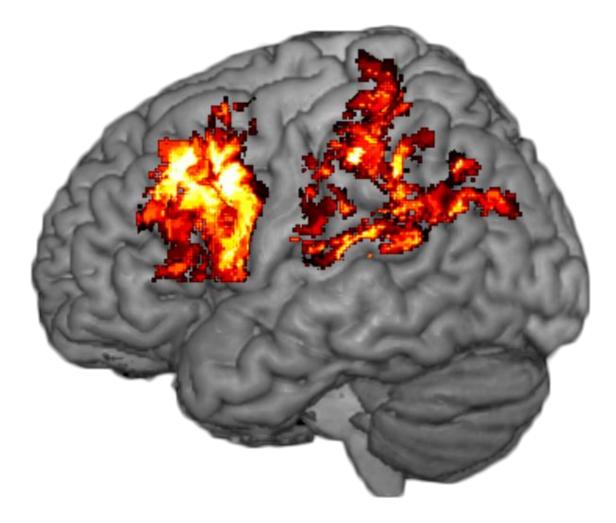


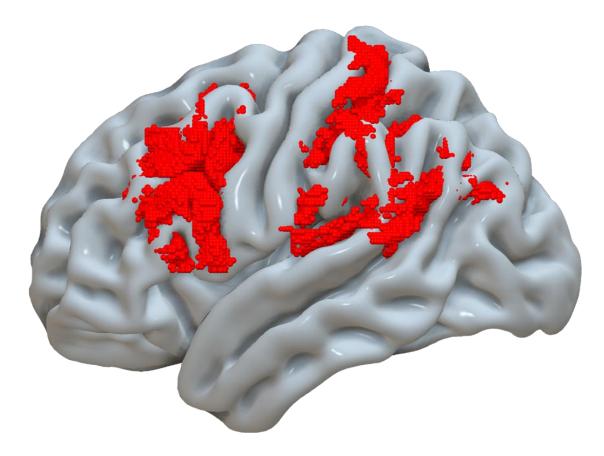

Gleichtgerrcht et al., 2018, Neuroimage: Clinical

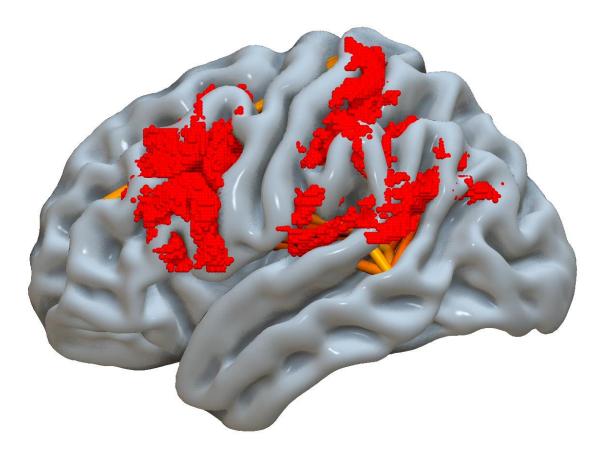



Garcea et al., in prep.











Tool Use Disconnection Network

