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Lesion-Symptom Mapping Pipeline

Lesion Post-

Drawing Processing

Software packages:
e SVR-LSM GUI (Matlab): https://github.com/atdemarco/svrlsmgui
e SCCAN (R): https://github.com/dorianps/LESYMAP/wiki/SCCAN-questions
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Lesion-Symptom Mapping approaches

* VLSM

— Perform a t-test at each voxel

— Large number of tests, (incorrectly) assumed to be
independent

* SVR-LSM

— Perform a single multivariate regression, with
significance determined using permutation testing

— P values still determined at the voxel level

— Unclear how to properly correct for multiple
comparisons

— Unclear how to properly correct for lesion size



SVR-LSM:
Correcting for lesion volume

dTLVC: normalize lesion status by 1/sqrt(TLV)

Regress on Lesion: Regress lesion status on TLV, use residuals
Regress on Behavior: Regress behavior on TLV, use residuals
Regress on Both

Corrects Corrects
behawor Ie5|on data

No correction

2 dTLVC (Zhang et al., 2014) X Partlal
3 Regress on Behavior v X
4 Regress on Lesion X v
5 Regress on Both v v

(DeMarco et al 2017)
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SVR-LSM:
Correcting for multiple comparisons

* Voxel-level correction (FDR, FWER)

Cluster-size thresholding (minimum contiguous cluster size)
e Cluster-level correction (FDR, FWER)

Cluster-size correction

No Correction Cluster-size threshold Cluster-size Correction




SVR-LSM:
Correcting for multiple comparisons

Voxel level corrections can be anticonservative for small
sample sizes and overly conservative at large sample sizes

Cluster-size thresholding may not prevent spurious clusters

Very rarely do clusters survive cluster-size correction

— This approach considers only cluster size, not cluster significance

* A large cluster with p = 0.05 observed by chance will outweigh a small
cluster with p = 0.00001

— This will wipe out the smaller clusters that SVR-LSM is supposed
to be better at identifying



SVR-LSM: Boundary Effects

* A few subjects can strongly influence the outcome
(e.g., at low N)




SVR-LSM: Boundary Effects

e Significant regions sometimes follow the edges of
the distribution (N = 74)

Overlap: N> 7 SVR-LSM (Regress on Both)




SVR-LSM

* Theoretically an improvement over VLSM

* In practice, SVR-LSM is not without its own set of
problems

* |s SVR-LSM the right tool for low N?

* We try to look for consistency across
analyses/correction techniques (but does this
invalidate your stats?)

» Know your data!



Multivariate LSM

* SVR-LSM

— Multivariate beta value calculation, voxel-level
significance testing

* SCCAN

— Multivariate weight calculation, map-level
significance testing



Sparse Canonical Correlation Analysis
for Neuroimaging (SCCAN)

oo | Addins - £ Project: (None) ~

Q- -

37 SccanBD.R = Environment  History

|

& Source on Save | & - - =% Run | B8 | [ Source - & | [#*Import Dataset + | &
CANN script "} Global Environment -
# Written by Harrison Stoll on October 2nd Data
# Load necessary packages sVr_gs 20 obs. of 1l variables e
values
s lib.loc ) Ch "/Users/mrri/Desktop/CDA/Behavior/CA_Behavior.txt"
¢ lib.loe L CSG.Goong "/volumes/Data HD/Laurels Group/Users/Stoll.Harrison/data///Beh.
! 11?;‘):” ) ) CSG.Lesions chr [1:131] "/volumes/Data HD/Laurels Group/Users/Stoll.Harrisa.
! shoes cscdata "/Volumes/Data HD/Laurels Group/Users/Stoll.Harrison/data//"
# Set location where files (i.e., scan and behavorial) will Data "/Users/mrri/Desktop/CDA"
Lesions chr [1:67] "/Users/mrri/Desktop/CDA/Lesions/MRO0B3.nii.gz"

Data = file.path( ) lesydata "fLibrary/Frameworks/R.framework/Versions/3.4/Rescurces/library..
lesydata = file.path(find.package( Yo ) © lsm.ca List of 8
# - Make sure behaviorial data is in © 1sm. Goong List of 5
# ocument into a word document, maki < L reg List of 12
# sure though e ! e t' via paste special, then save the word document as template <Object with null pointer>
# £ and make sure that your le files are in .nii.gz mat. Finally your le files s d b
# as the behaviorial data in the .txt file (i.e., first lesion in folder should be first behaviorial
# in text file). Files Plots Packages Help Viewer =

#LESYMAF ASSUMES YOU ARE INTERESTED IN LOWER VALUES.. i | cores to predic lesion locations
[ | o = Q = | &1
1:1 (Top Level} > R Script + R: Leions to Symptom Mapping in R -
Console ~ |

Leions to Symptom Mapping in R

DO

Documentation for package ‘LESYMAP’ version 0.0.0.9003

« DESCRIPTION file.
+ Package NEWS.

Help Pages

.createFolds createFolds
BM Massive Brunner-Munzel tests
BMfast Fast Brunner-Munzel tests (v1)




Canonical Correlation Analysis (CCA)

e Say we have two sets of variables:
X = {X{,X,}
Y =1y Y.}
« We define some a and b such that
v, =a'x
v, = b'y
 We will choose a and b that maximize the correlation
between v, and v,

planey




SCCAN: An extension of CCA

weights
voxels E

 We have a matrix of voxels on one hand, and a vector of
behavior on the other
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 We look for a [pair of] basis (feature weight) vectors such
that the correlation of the projected voxel and behavioral
data into that basis set is maximized

— We require that basis vectors be sparse, i.e. that most of the
feature weights are zero

— Weights are smoothed, and isolated voxels are set back to O



SCCAN: How it works

* The basis vector we identified serves as our feature weights
(arranged to create a 3D map of voxel weights)
— Larger weight means a stronger voxel-behavior relationship
— We do NOT get voxel-level statistical values

* The extent of the map depends on the sparseness value

= -




SCCAN: How it works

Determining sparseness

Iterative cross-validation approach —find the
sparseness value that maximizes prediction
accuracy in cross-validation

— Penalty for larger sparseness values (prefer a more
sparse feature-weight vector)

— Sparseness also affects neighboring feature weights
(not quite analogous to threshholding a beta map)

Cross-validation gives us one p value for the
entire map
— This tells us if the map is interpretable or random

This is the opposite of SVR-LSM

Increasing Sparseness




Running SCCAN

> lsm.MA = lesymap(Lesions, MA, method = 'sccan',optimizeSparseness=TRUE, sparsenessPenalty = .81)
13:89:21 Running LESYMAP 0.09.8.9221
13:89:01 Checking a few things...
13:09:01 Loading behavioral data... 68 scores found.
13:09:01 Filenames as input, checking lesion values on 1lst image...
13:09:01 Detected unusual lesion values, loading files into memory to fix...
13:09:02 Detected lesion value above 1. Rebinarizing @/1...
13:89:085 SCCAN method: ignoring patch, nperm, and multiple comparison...
13:09:05 Searching voxels lesioned in >= 10% subjects... 296404 found
13:89:06 noPatch true - Patches will not be used...
13:09:06 Computing lesion matrix... 68x296404
13:09:10 Running analysis: sccan ...

Searching for optimal sparseness:

lower/upper bound: -0.9 / 8.9

cvRepetitions: 3

nFolds: 4

sparsenessPenalty: @8.01

optim tolerance: @.03
13:09:12 Checking sparseness -0.212 . . . C(V correlation @.8347 (0.684) (cost=0.967)
13:31:10 Checking sparseness @8.212 . . . C(V correlation @.169 (0.571) (cost=0.833)
13:48:40 Checking sparseness @.475 . . . C(V correlation @.185 (0.522) (cost=0.82@)
14:00:40 Checking sparseness @.413 . . . C(V correlation @.183 (0.537) (cost=0.821)
14:15:31 Checking sparseness @.523 . . . C(V correlation @.186 (0.513) (cost=0.819)
14:25:34 Checking sparseness @.667 . . . (V correlation ©.192 (0.484) (cost=0.814)
14:31:25 Checking sparseness @.756 . . . (V correlation ©.196 (0.469) (cost=0.812)
14:37:13 Checking sparseness @.811 . . . (V correlation ©.199 (0.463) (cost=0.81@)
14:43:00 Checking sparseness @.845 . . . C(V correlation @.201 (0.457) (cost=0.8@7)
14:48:50 Checking sparseness @.866 . . . C(V correlation @.202 (0.452) (cost=0.807)
14:55:51 Checking sparseness @.879 . . . C(V correlation 0.202 (0.451) (cost=0.887)
15:04:02 Checking sparseness @.856 . . . C(V correlation @.201 (0.453) (cost=0.807)
15:11:00 Checking sparseness @.866 CV correlation @.202 (0.452) (cost=0.807)

Found optimal sparsenes @.866 (CV corr=0.202 p=0.0983)
WARNING: Poor cross-validated accuracy, returning NULL result.
15:18:11 Preparing images. ..
15:18:11 Logging call details...
15:18:11 Done! 2.2 hours




SCCAN versus other methods

e SCCAN often finds similar or more significant voxels
compared to other methods

T-test SVR Voxel-Corrected Map
Lesion Correction: None  Lesion Correction: Regress on Both SCCAN

* How do we decide these findings are real and not spurious?
— No total lesion volume correction by default
— No voxel-level multiple-comparisons correction necessary
— Built-in minimum cluster size; should we still threshold post-hoc?



Connectome-based Lesion Symptom Mapping

Structural connectivity Functional connectivity

Resting state

DTI =
Central

f '\9
and g e s : Thalamus
fiber tracking :

Matlab / GIFT

Caudate Nucleus
Haasz, Hodneland, Ystad, Westlye, Eichele, Lundervold, UiB




Connectome-based Lesion Symptom Mapping
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Gleichtgerrcht et al., 2018, Neuroimage: Clinical
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Garcea et al., in prep.















Garcea et al., in prep.
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Tool Use Disconnection Network
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Garcea et al., in prep.



